ดาราศาสตร์

โลกเอียงมากที่สุดหรือไม่?

โลกเอียงมากที่สุดหรือไม่?


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

ฉันกำลังพยายามทำความเข้าใจความเอียงของวงโคจรโดยดูจากตารางความเอียงของวงโคจรของดาวเคราะห์ที่ https://en.wikipedia.org/wiki/Orbital_inclination (มีความเอียงของวงโคจรสำหรับดาวเคราะห์ยักษ์บนบกและก๊าซในรายการ)

จากการเอียงของสุริยุปราคาหรือเส้นศูนย์สูตรของดวงอาทิตย์ ดูเหมือนว่าโลกจะมีความเอียงมากที่สุด (หรือน้อยที่สุด) จากวัตถุที่อยู่ในรายการทั้งหมดที่มีค่าเอียงน้อยที่สุด (หรือใหญ่ที่สุด) อย่างไรก็ตาม ความโน้มเอียงไปยังระนาบไม่แปรผันดูเหมือนจะใหญ่กว่าสำหรับดาวเคราะห์บางดวงมากกว่าสำหรับโลก และเล็กกว่าสำหรับดาวเคราะห์ดวงอื่น

ตอนแรกฉันคิดว่าการแสดงค่าสัมบูรณ์ (การลดเครื่องหมายลบ) ในกรณีที่มีมุมลบเป็นกรณี แต่ถ้าสามคอลัมน์นั้นเป็นระนาบอ้างอิงที่ต่างกันเพียงสามระนาบ อย่างน้อยความต่างสัมพัทธ์ระหว่างการเอียงของดาวเคราะห์ก็ควรจะเหมือนกันในทุกกรณี แต่มันไม่ได้เป็นเช่นนั้น ตัวอย่างเช่น ระนาบการโคจรของดาวพุธและดาวศุกร์มีระยะห่างระหว่างกัน 3.62° ตามความโน้มเอียงของสุริยุปราคา แต่มี 0.48° ตามความเอียงของเส้นศูนย์สูตรของดวงอาทิตย์

ดังนั้นเราควรอ่านตัวเลขเหล่านั้นอย่างไร?


สิ่งที่น่าสับสนคือความเอียงไม่ใช่สิ่งเดียวที่กำหนดระนาบการโคจร มันยังสำคัญว่าโหนดจากน้อยไปมากอยู่ที่ไหน เท่านั้น หากโหนดจากน้อยไปมากทั้งหมดอยู่ในทิศทางเดียวกัน คุณสามารถทำเคล็ดลับด้วยค่าสัมบูรณ์ที่คุณกล่าวถึง

ตอนนี้ฉันวาดรูปไม่ได้ แต่ลองนึกภาพว่าคุณมีโต๊ะอยู่ตรงหน้าคุณแล้ว และใช้เป็นระนาบอ้างอิง (เส้นศูนย์สูตรของดวงอาทิตย์) วางกระดาษหนึ่งแผ่นบนโต๊ะ แล้วยกปลายด้านขวาขึ้นเล็กน้อยเพื่อให้เอียง 7.155 องศา w.r.t. โต๊ะ. นี่คือวงโคจรของโลก และดูเหมือนภาพในบทความ Wikipedia เล็กน้อย

ตอนนี้เอากระดาษอีกแผ่นหนึ่งแล้วยกปลายอีกด้านขึ้นเล็กน้อยเพื่อให้เอียง 7.155 ° w.r.t. โต๊ะ. นี่ควรจะเป็นระนาบการโคจรของดาวเคราะห์สมมุติที่มีความโน้มเอียงไปทางเส้นศูนย์สูตรของดวงอาทิตย์เหมือนกัน แต่มันคือ ยัง เอียงไปทางสุริยุปราคา (เช่น ระนาบการโคจรของโลก)


Earth Science คือการศึกษาโลกและเพื่อนบ้านในอวกาศ เป็นวิทยาศาสตร์ที่น่าตื่นเต้นพร้อมการใช้งานที่น่าสนใจและเป็นประโยชน์มากมาย นักวิทยาศาสตร์ Earth บางคนใช้ความรู้เกี่ยวกับโลกเพื่อค้นหาและพัฒนาแหล่งพลังงานและแร่ธาตุ คนอื่นๆ ศึกษาผลกระทบของกิจกรรมของมนุษย์ที่มีต่อสิ่งแวดล้อมของโลก และวิธีการออกแบบเพื่อปกป้องโลก บางคนใช้ความรู้เกี่ยวกับกระบวนการของโลก เช่น ภูเขาไฟ แผ่นดินไหว และพายุเฮอริเคน เพื่อวางแผนชุมชนที่จะไม่ทำให้ผู้คนสัมผัสกับเหตุการณ์อันตรายเหล่านี้

มีการใช้วิทยาศาสตร์ต่างๆ มากมายเพื่อเรียนรู้เกี่ยวกับโลก อย่างไรก็ตาม สาขาวิชาพื้นฐานทั้งสี่ของการศึกษาวิทยาศาสตร์โลก ได้แก่ ธรณีวิทยา อุตุนิยมวิทยา สมุทรศาสตร์ และดาราศาสตร์ คำอธิบายสั้น ๆ เกี่ยวกับวิทยาศาสตร์เหล่านี้มีให้ด้านล่าง

นักวิทยาศาสตร์โลกศึกษาใต้ผิวดิน

การทำแผนที่ภายในภูเขาไฟ: Dr. Catherine Snelson ผู้ช่วยศาสตราจารย์ด้านธรณีฟิสิกส์ที่ New Mexico Tech ได้จุดชนวนระเบิดเล็กๆ ที่ด้านข้างของ Mount Erebus (ภูเขาไฟในทวีปแอนตาร์กติกา) แรงสั่นสะเทือนจากการระเบิดจะเคลื่อนเข้าสู่โลกและสะท้อนออกจากโครงสร้างด้านล่าง เครื่องมือของเธอบันทึกการสั่นสะเทือน เธอใช้ข้อมูลเพื่อเตรียมแผนที่ภายในภูเขาไฟ ได้รับความอนุเคราะห์จาก Martin Reed มูลนิธิวิทยาศาสตร์แห่งชาติและโครงการแอนตาร์กติกของสหรัฐอเมริกา เรียนรู้เพิ่มเติมเกี่ยวกับสิ่งที่ Dr. Snelson และคนอื่นๆ กำลังทำเพื่อเรียนรู้เกี่ยวกับ Mount Erebus

ธรณีวิทยา: วิทยาศาสตร์ของโลก

ธรณีวิทยาเป็นวิทยาศาสตร์พื้นพิภพเบื้องต้น คำว่า "ศึกษาโลก" ธรณีวิทยาเกี่ยวข้องกับองค์ประกอบของวัสดุโลก โครงสร้างโลก และกระบวนการของโลก นอกจากนี้ยังเกี่ยวข้องกับสิ่งมีชีวิตของโลกและการเปลี่ยนแปลงของดาวเคราะห์เมื่อเวลาผ่านไป นักธรณีวิทยาค้นหาเชื้อเพลิงและแร่ธาตุ ศึกษาอันตรายจากธรรมชาติ และทำงานเพื่อปกป้องสิ่งแวดล้อมของโลก

นักวิทยาศาสตร์โลกทำแผนที่พื้นผิว

การทำแผนที่ลาวาไหล: ชาร์ลี เบคอน นักภูเขาไฟวิทยาจาก USGS วาดเส้นแบ่งเขตการไหลของลาวายุคก่อนประวัติศาสตร์จาก Mount Veniaminof ในมลรัฐอะแลสกา ลงบนแผนที่ แผนที่นี้จะแสดงพื้นที่ที่ครอบคลุมโดยการระเบิดของลาวาในอดีต และสามารถใช้เพื่อประเมินผลกระทบที่อาจเกิดขึ้นจากการปะทุในอนาคต นักวิทยาศาสตร์ในอลาสก้ามักพกอาวุธปืน (เบื้องหน้า) และสเปรย์พริกไทยเพื่อป้องกันหมีกริซลี่ กระเป๋าเป้บรรจุอาหารและอุปกรณ์เอาตัวรอด และวิทยุสองทางเพื่อเรียกนักบินเฮลิคอปเตอร์ของเขา ชุดเอี๊ยมสีส้มของชาร์ลีช่วยให้นักบินพบเขาในวันที่ไปรับ ภาพโดย Charlie Bacon หอดูดาวภูเขาไฟ USGS / Alaska

อุตุนิยมวิทยา: ศาสตร์แห่งบรรยากาศ

อุตุนิยมวิทยาคือการศึกษาชั้นบรรยากาศและกระบวนการในชั้นบรรยากาศเป็นตัวกำหนดสภาพอากาศและภูมิอากาศของโลกอย่างไร อุตุนิยมวิทยาเป็นศาสตร์ที่ใช้งานได้จริงเพราะทุกคนมีความกังวลเกี่ยวกับสภาพอากาศ การเปลี่ยนแปลงของสภาพอากาศเมื่อเวลาผ่านไปเพื่อตอบสนองต่อการกระทำของผู้คนเป็นหัวข้อที่ทั่วโลกกังวลอย่างเร่งด่วน การศึกษาอุตุนิยมวิทยามีความสำคัญอย่างยิ่งในการปกป้องสิ่งแวดล้อมของโลก

วัฏจักรอุทกวิทยา - ระบบธรณีศาสตร์

วัฏจักรอุทกวิทยา: ธรณีศาสตร์เกี่ยวข้องกับการศึกษาระบบต่างๆ เช่น วัฏจักรอุทกวิทยา ระบบประเภทนี้สามารถเข้าใจได้โดยใช้ความรู้ด้านธรณีวิทยา (น้ำบาดาล) อุตุนิยมวิทยา (สภาพอากาศและสภาพอากาศ) สมุทรศาสตร์ (ระบบมหาสมุทร) และดาราศาสตร์ (พลังงานจากดวงอาทิตย์) วัฏจักรอุทกวิทยาอยู่ในสมดุลเสมอ - อินพุตและการถอนต้องเท่ากัน นักวิทยาศาสตร์โลกจะกำหนดผลกระทบของการป้อนข้อมูลของมนุษย์หรือถอนตัวออกจากระบบ ภาพ NOAA ที่สร้างโดย Peter Corrigan

สมุทรศาสตร์: ศาสตร์แห่งมหาสมุทร

สมุทรศาสตร์คือการศึกษามหาสมุทรของโลก - องค์ประกอบ การเคลื่อนไหว สิ่งมีชีวิตและกระบวนการ มหาสมุทรครอบคลุมพื้นที่ส่วนใหญ่ในโลกของเรา และเป็นทรัพยากรที่สำคัญสำหรับอาหารและสินค้าโภคภัณฑ์อื่นๆ พวกเขากำลังถูกใช้เป็นแหล่งพลังงานมากขึ้น มหาสมุทรยังมีอิทธิพลอย่างมากต่อสภาพอากาศ และการเปลี่ยนแปลงในมหาสมุทรสามารถขับเคลื่อนหรือเปลี่ยนแปลงสภาพภูมิอากาศในระดับปานกลาง นักสมุทรศาสตร์ทำงานเพื่อพัฒนามหาสมุทรให้เป็นทรัพยากรและปกป้องมหาสมุทรจากผลกระทบของมนุษย์ เป้าหมายคือการใช้ประโยชน์จากมหาสมุทรในขณะที่ลดผลกระทบของการกระทำของเรา

ดาราศาสตร์: วิทยาศาสตร์ของจักรวาล

ดาราศาสตร์คือการศึกษาจักรวาล ต่อไปนี้คือตัวอย่างบางส่วนที่อธิบายว่าเหตุใดการศึกษาอวกาศนอกโลกจึงมีความสำคัญ: ดวงจันทร์ขับเคลื่อนระบบน้ำขึ้นน้ำลงของมหาสมุทร ผลกระทบของดาวเคราะห์น้อยได้ทำลายล้างผู้อยู่อาศัยของโลกซ้ำแล้วซ้ำเล่า และพลังงานจากดวงอาทิตย์ขับเคลื่อนสภาพอากาศและภูมิอากาศของเรา ความรู้ทางดาราศาสตร์มีความสำคัญต่อการเข้าใจโลก นักดาราศาสตร์สามารถใช้ความรู้เกี่ยวกับวัสดุ กระบวนการ และประวัติศาสตร์ของโลกเพื่อทำความเข้าใจดาวเคราะห์ดวงอื่น แม้กระทั่งดาวเคราะห์นอกระบบสุริยะของเราเอง


ข้อความที่ตัดตอนมาจากหนังสือ: "ต่างดาว: สัญญาณแรกของชีวิตที่ชาญฉลาดเหนือโลก"

หนังสือเล่มใหม่ของ Avi Loeb เรื่อง "Extraterrestrial: The First Sign of Intelligent Life Beyond Earth" (Houghton Mifflin Harcourt) ตรวจสอบหลักฐานของวัตถุที่มีต้นกำเนิดจากดวงดาวที่นักดาราศาสตร์ฮาร์วาร์ดแนะนำว่าถูกผลิตขึ้น

อ่านข้อความที่ตัดตอนมาจากบทนำของหนังสือด้านล่าง &ndash และอย่าพลาดบทสัมภาษณ์ของ David Pogue กับ Avi Loeb ใน "CBS Sunday Morning" 16 พฤษภาคม!

Houghton Mifflin Harcourt

เมื่อคุณมีโอกาส ก้าวออกไปชื่นชมจักรวาล วิธีนี้ทำได้ดีที่สุดในเวลากลางคืนแน่นอน แต่ถึงแม้วัตถุท้องฟ้าเพียงดวงเดียวที่เรามองเห็นได้คือดวงอาทิตย์ตอนเที่ยงวัน จักรวาลก็อยู่ที่นั่นเสมอรอความสนใจจากเรา แค่เงยหน้าขึ้นก็พบว่าช่วยเปลี่ยนมุมมองของคุณได้

มุมมองเหนือศีรษะของเรานั้นงดงามที่สุดในตอนกลางคืน แต่นี่ไม่ใช่คุณภาพของจักรวาล แต่เป็นคุณภาพของมนุษยชาติ ในช่วงเวลากลางวัน เราส่วนใหญ่ใช้เวลาส่วนใหญ่ไปกับการพิจารณาสิ่งที่อยู่ข้างหน้าเราสองสามฟุตหรือหลา เมื่อเราคิดถึงสิ่งที่อยู่เหนือเรา ส่วนใหญ่มักเป็นเพราะเรากังวลเกี่ยวกับสภาพอากาศ แต่ในเวลากลางคืน ความกังวลเรื่องโลกของเรามีแนวโน้มลดลง และความยิ่งใหญ่ของดวงจันทร์ ดวงดาว ทางช้างเผือก และ &mdash เพื่อความโชคดีในหมู่พวกเรา &mdash ร่องรอยของดาวหางหรือดาวเทียมที่เคลื่อนผ่านจะมองเห็นได้โดยกล้องโทรทรรศน์หลังบ้านและแม้แต่ภาพเปลือย ตา.

สิ่งที่เราเห็นเมื่อเราสนใจที่จะค้นหาเป็นแรงบันดาลใจให้มนุษยชาติย้อนหลังไปถึงประวัติศาสตร์ที่บันทึกไว้ อันที่จริงเมื่อเร็ว ๆ นี้มีการสันนิษฐานว่าภาพเขียนในถ้ำอายุสี่หมื่นปีทั่วยุโรปแสดงให้เห็นว่าบรรพบุรุษที่อยู่ห่างไกลของเราติดตามดวงดาว ตั้งแต่กวีไปจนถึงนักปรัชญา นักเทววิทยาไปจนถึงนักวิทยาศาสตร์ เราได้พบการยั่วยุให้เกิดความกลัว การกระทำ และความก้าวหน้าของอารยธรรมในจักรวาล มันเป็นสนามดาราศาสตร์ที่เพิ่งตั้งไข่ซึ่งเป็นแรงผลักดันสำหรับการปฏิวัติทางวิทยาศาสตร์ของ Nicolaus Copernicus, Galileo Galilei และ Isaac Newton ที่ทำให้โลกออกจากศูนย์กลางของจักรวาลทางกายภาพ นักวิทยาศาสตร์เหล่านี้ไม่ใช่คนกลุ่มแรกที่สนับสนุนมุมมองที่ต่อต้านตนเองมากกว่าในโลกของเรา แต่ต่างจากนักปรัชญาและนักศาสนศาสตร์ที่นำหน้าพวกเขา พวกเขาอาศัยวิธีการของสมมติฐานที่มีหลักฐานสนับสนุน ซึ่งนับแต่นั้นเป็นต้นมาก็ได้เป็นรากฐานสำคัญของความก้าวหน้าของอารยธรรมมนุษย์ .

อวกาศและดาราศาสตร์

ฉันใช้เวลาส่วนใหญ่ในอาชีพการงานของฉันไปกับความอยากรู้อยากเห็นเกี่ยวกับจักรวาลอย่างจริงจัง ไม่ว่าทางตรงหรือทางอ้อม ทุกสิ่งที่อยู่นอกชั้นบรรยากาศของโลกอยู่ในขอบเขตของงานประจำของฉัน ในขณะที่เขียนบทความนี้ ข้าพเจ้าดำรงตำแหน่งหัวหน้าภาควิชาดาราศาสตร์ของมหาวิทยาลัยฮาร์วาร์ด ผู้ก่อตั้งโครงการ Black Hole Initiative ของฮาร์วาร์ด ผู้อำนวยการสถาบันทฤษฎีและการคำนวณภายในศูนย์ดาราศาสตร์ฟิสิกส์ฮาร์วาร์ด-สมิธโซเนียน ประธานโครงการ Breakthrough Starshot Initiative ประธานคณะกรรมการฟิสิกส์และดาราศาสตร์แห่งชาติ ซึ่งเป็นสมาชิกของคณะกรรมการที่ปรึกษาสำหรับแพลตฟอร์มดิจิทัล Einstein: Visualize the Impossible จากมหาวิทยาลัยฮิบรูแห่งเยรูซาเลม และสมาชิกสภาที่ปรึกษาด้านวิทยาศาสตร์และเทคโนโลยีในวอชิงตัน , กระแสตรง. เป็นความโชคดีของฉันที่ได้ร่วมงานกับนักวิชาการและนักเรียนที่มีความสามารถพิเศษหลายคน ในขณะที่เราพิจารณาคำถามที่ลึกซึ้งที่สุดของจักรวาล

หนังสือเล่มนี้เผชิญหน้ากับคำถามที่ลึกซึ้งข้อใดข้อหนึ่ง ซึ่งอาจเป็นผลสืบเนื่องมากที่สุด: เราอยู่คนเดียวหรือไม่? เมื่อเวลาผ่านไป คำถามนี้มีกรอบในลักษณะต่างๆ ชีวิตบนโลกใบนี้เป็นชีวิตเดียวในจักรวาลหรือไม่? มนุษย์เป็นสติปัญญาเพียงอารมณ์เดียวในความกว้างใหญ่ของอวกาศและเวลาหรือไม่? การกำหนดกรอบคำถามที่ดีกว่าและแม่นยำยิ่งขึ้นคือ: ตลอดพื้นที่กว้างใหญ่ไพศาลและตลอดช่วงอายุขัยของจักรวาล ปัจจุบันมีหรือเคยมีอารยธรรมทางอารมณ์อื่น ๆ ที่สำรวจดวงดาวและทิ้งหลักฐานเกี่ยวกับดวงดาวเช่นเดียวกับเรา ความพยายาม?

ฉันเชื่อว่าในปี 2560 มีหลักฐานผ่านระบบสุริยะของเราซึ่งสนับสนุนสมมติฐานที่ว่าคำตอบสำหรับคำถามสุดท้ายคือใช่ ในหนังสือเล่มนี้ ข้าพเจ้าดูหลักฐานนั้น ทดสอบสมมติฐานนั้น และถามว่าจะเกิดผลอะไรตามมาหากนักวิทยาศาสตร์ให้ความเชื่อถือแบบเดียวกันกับที่พวกเขาให้ไว้กับการคาดเดาเกี่ยวกับสมมาตรยิ่งยวด มิติเพิ่มเติม ธรรมชาติของสสารมืด และความเป็นไปได้ของลิขสิทธิ์

แต่หนังสือเล่มนี้ก็ถามคำถามอื่นด้วย ในบางวิธีที่ยากกว่านั้น พวกเราทั้งนักวิทยาศาสตร์และฆราวาสพร้อมหรือยัง? อารยธรรมมนุษย์พร้อมที่จะเผชิญหน้ากับสิ่งที่ตามมาหลังจากเรายอมรับข้อสรุปที่เป็นไปได้หรือไม่ ซึ่งมาจากสมมติฐานที่มีหลักฐานสนับสนุน ว่าชีวิตบนบกไม่ได้มีเอกลักษณ์เฉพาะตัวและอาจไม่น่าประทับใจเป็นพิเศษด้วยซ้ำ ฉันกลัวว่าคำตอบคือไม่ และอคติที่มีอยู่นั้นเป็นสาเหตุของความกังวล

เช่นเดียวกับในหลาย ๆ อาชีพ กระแสแฟชั่นและอนุรักษ์นิยมเมื่อเผชิญหน้ากับสิ่งที่ไม่คุ้นเคยนั้นปรากฏชัดในชุมชนวิทยาศาสตร์ นักอนุรักษ์นิยมบางส่วนเกิดจากสัญชาตญาณที่น่ายกย่อง วิธีการทางวิทยาศาสตร์ส่งเสริมความระมัดระวังตามสมควร เราตั้งสมมติฐาน รวบรวมหลักฐาน ทดสอบสมมติฐานนั้นกับหลักฐานที่มีอยู่ แล้วปรับแต่งสมมติฐานหรือรวบรวมหลักฐานเพิ่มเติม แต่แฟชั่นอาจกีดกันการพิจารณาสมมติฐานบางอย่าง และความเป็นมืออาชีพสามารถดึงความสนใจและทรัพยากรไปยังบางเรื่องและแยกจากเรื่องอื่นๆ

วัฒนธรรมสมัยนิยมไม่ได้ช่วย หนังสือและภาพยนตร์นิยายวิทยาศาสตร์มักบรรยายถึงความฉลาดของมนุษย์ต่างดาวในลักษณะที่นักวิทยาศาสตร์ที่จริงจังส่วนใหญ่มองว่าเป็นเรื่องน่าหัวเราะ มนุษย์ต่างดาวทำลายล้างเมืองต่างๆ ของโลก แย่งชิงร่างมนุษย์ หรือพยายามสื่อสารกับเราด้วยวิธีการเฉียงๆ อย่างทรมาน ไม่ว่าพวกเขาจะคิดร้ายหรือมีเมตตา มนุษย์ต่างดาวมักจะมีปัญญาเหนือมนุษย์และเชี่ยวชาญฟิสิกส์ในลักษณะที่อนุญาตให้พวกเขาจัดการกับเวลาและพื้นที่เพื่อให้พวกเขาสามารถข้ามจักรวาล &mdash บางครั้งแม้แต่ลิขสิทธิ์ &mdash ในพริบตา ด้วยเทคโนโลยีนี้ พวกเขามักใช้ระบบสุริยะ ดาวเคราะห์ และแม้แต่แถบบริเวณใกล้เคียงที่เต็มไปด้วยชีวิตที่มีความรู้สึก หลายปีที่ผ่านมา ฉันเชื่อว่ากฎของฟิสิกส์หยุดใช้เพียงสองแห่งเท่านั้น: ภาวะเอกฐานและฮอลลีวูด

โดยส่วนตัวแล้ว ฉันไม่ชอบนิยายวิทยาศาสตร์เมื่อละเมิดกฎของฟิสิกส์ ฉันชอบวิทยาศาสตร์และฉันชอบนิยาย แต่เฉพาะเมื่อมันเป็นเรื่องจริง ไม่มีการเสแสร้ง อย่างมืออาชีพ ฉันกังวลว่าการแสดงภาพเอเลี่ยนที่น่าตื่นเต้นได้นำไปสู่วัฒนธรรมที่ได้รับความนิยมและเป็นวิทยาศาสตร์ ซึ่งเป็นที่ยอมรับได้ที่จะหัวเราะเยาะการพูดคุยที่จริงจังเกี่ยวกับชีวิตมนุษย์ต่างดาว แม้ว่าจะมีหลักฐานชัดเจนว่านี่เป็นหัวข้อที่ควรค่าแก่การอภิปรายจริงๆ ซึ่งเป็นเรื่องที่เรา ควรจะคุยกันตอนนี้มากกว่าที่เคย

เราเป็นชีวิตที่ชาญฉลาดเพียงคนเดียวในจักรวาลหรือไม่? เรื่องเล่าในนิยายวิทยาศาสตร์ได้เตรียมเราให้พร้อมสำหรับความคาดหวังว่าคำตอบคือไม่ และคำตอบนั้นจะมาพร้อมกับการบรรยายทางวิทยาศาสตร์แบบปังๆ ที่มักจะหลีกเลี่ยงคำถามทั้งหมด ผลที่ได้คือมนุษย์กำลังป่วยหนักเตรียมเผชิญหน้ากับมนุษย์ต่างดาว หลังจากเครดิตม้วนแล้วออกจากโรงหนังแล้วมองขึ้นไปบนท้องฟ้ายามค่ำคืน คอนทราสก็สั่นสะท้าน เหนือเราเราเห็นพื้นที่ว่างส่วนใหญ่ดูเหมือนไร้ชีวิตชีวา แต่รูปลักษณ์ภายนอกสามารถหลอกลวงได้ และเพื่อประโยชน์ของเราเอง เราไม่สามารถปล่อยให้ตัวเองถูกหลอกได้อีกต่อไป &hellip

หลักฐานส่วนใหญ่ที่หนังสือเล่มนี้ต่อสู้ด้วยได้รับรวบรวมมาเป็นเวลาสิบเอ็ดวัน เริ่มตั้งแต่วันที่ 19 ตุลาคม 2017 นั่นคือระยะเวลาที่เราต้องสังเกตผู้มาเยือนในอวกาศคนแรกที่รู้จัก การวิเคราะห์ข้อมูลนี้ร่วมกับการสังเกตเพิ่มเติมจะทำให้การอนุมานของเราเกี่ยวกับวัตถุแปลกประหลาดนี้ สิบเอ็ดวันดูเหมือนจะไม่มากนัก และไม่มีนักวิทยาศาสตร์คนใดที่ไม่ต้องการให้เรารวบรวมหลักฐานเพิ่มเติม แต่ข้อมูลที่เรามีมีมากมาย และจากข้อมูลดังกล่าว เราสามารถอนุมานได้หลายอย่าง ซึ่งทั้งหมดนี้ผมให้รายละเอียด ในหน้าของหนังสือเล่มนี้ แต่ทุกคนที่ได้ศึกษาข้อมูลอนุมานข้อหนึ่งยอมรับได้: ผู้มาเยี่ยมรายนี้ เมื่อเทียบกับวัตถุอื่นๆ ที่นักดาราศาสตร์เคยศึกษาแล้ว ถือว่าแปลกใหม่ และสมมติฐานที่เสนอขึ้นเพื่ออธิบายลักษณะเฉพาะที่สังเกตได้ทั้งหมดของวัตถุนั้นก็แปลกใหม่เช่นกัน

ฉันขอเสนอว่าคำอธิบายที่ง่ายที่สุดสำหรับลักษณะเฉพาะเหล่านี้คือวัตถุนั้นถูกสร้างขึ้นโดยอารยธรรมที่ชาญฉลาดซึ่งไม่ใช่ของโลกนี้

ภาพ: การโคจรของวัตถุ (ชื่อ `Oumuamua) ผ่านระบบสุริยะ ต่างจากดาวเคราะห์น้อยหรือดาวหางทั้งหมดที่เคยพบมาก่อน วงโคจรนี้ไม่ได้ผูกมัดด้วยแรงโน้มถ่วงของดวงอาทิตย์ `Oumuamua มีต้นกำเนิดมาจากอวกาศระหว่างดวงดาวและจะกลับมาที่นั่นด้วยความเร็วที่เพิ่มขึ้นอันเป็นผลมาจากการเคลื่อนตัวเข้าใกล้ดวงอาทิตย์ วงโคจรไฮเปอร์โบลิกของมันมีความโน้มเอียงเมื่อเทียบกับระนาบสุริยุปราคาของระบบสุริยะ และไม่ผ่านเข้าใกล้ดาวเคราะห์ใดๆ ระหว่างทาง ESO/K Meech et al. จาก "ต่างดาว"

นี่เป็นสมมติฐานแน่นอน &mdash แต่เป็นสมมติฐานทางวิทยาศาสตร์อย่างถี่ถ้วน อย่างไรก็ตาม ข้อสรุปที่เราสามารถดึงออกมาได้นั้น ไม่ใช่เพียงทางวิทยาศาสตร์เท่านั้น และไม่ใช่การกระทำที่เราอาจดำเนินการตามข้อสรุปเหล่านั้น นั่นเป็นเพราะว่าสมมติฐานง่ายๆ ของผมเปิดกว้างสำหรับคำถามที่ลึกซึ้งที่สุดบางข้อที่มนุษย์เคยพยายามหาคำตอบ คำถามที่ถูกมองผ่านเลนส์ของศาสนา ปรัชญา และวิธีการทางวิทยาศาสตร์ พวกเขาสัมผัสทุกสิ่งที่มีความสำคัญต่ออารยธรรมและชีวิตของมนุษย์ ทุกชีวิตในจักรวาล

ด้วยจิตวิญญาณของความโปร่งใส ให้รู้ว่านักวิทยาศาสตร์บางคนพบว่าสมมติฐานของฉันไม่ทันสมัย ​​นอกเหนือวิทยาศาสตร์กระแสหลัก แม้จะตั้งครรภ์อย่างอันตรายก็ตาม แต่ฉันเชื่อว่าข้อผิดพลาดที่ร้ายแรงที่สุดที่เราสามารถทำได้คืออย่าใช้ความเป็นไปได้นี้อย่างจริงจังพอ .


ตัดตอนมาจาก "ต่างดาว: สัญญาณแรกของชีวิตที่ชาญฉลาดเหนือโลก" โดย Avi Loeb ลิขสิทธิ์ 2021 โดย Avi Loeb ใช้โดยได้รับอนุญาตจาก Houghton Mifflin Harcourt Publishing Company สงวนลิขสิทธิ์.


การทดสอบดาราศาสตร์2

คาดว่าดาวหางกว่าล้านล้านดวงตั้งอยู่ไกลเกินกว่าดาวพลูโตใน ____________
ส่วนทรงกลมสว่างของดาวหางที่สังเกตได้เมื่อเข้าใกล้ดวงอาทิตย์คือ ____________
พลาสมาของดาวหาง _______________ อยู่ห่างจากดวงอาทิตย์โดยตรง
ดาวหาง _______________ ส่วนที่เป็นน้ำแข็งของดาวหาง
อนุภาคที่พุ่งออกมาจากดาวหางสามารถทำให้เกิด (n) _____________ บนโลกได้
_____________ ขยายจากรอบนอกวงโคจรของดาวเนปจูนไปจนถึงระยะทางประมาณสองเท่าของดาวเนปจูนจากดวงอาทิตย์

ยูโรปา
ลักษณะพื้นผิวเป็นหลักฐานของมหาสมุทรของเหลวใต้ผิวดิน
พื้นผิวที่ปกคลุมด้วยน้ำแข็งมีหลุมอุกกาบาตน้อย

ดวงจันทร์ที่ใหญ่ที่สุดในระบบสุริยะคือ ______________
ดวงจันทร์ Jovian ที่มีพื้นผิวที่มีการเคลื่อนไหวทางธรณีวิทยามากที่สุดคือ ______________
หลักฐานที่ชัดเจนทั้งจากลักษณะพื้นผิวและข้อมูลสนามแม่เหล็กสนับสนุนการมีอยู่ของมหาสมุทรใต้ผิวดินบน _________________
______________ เป็นผู้รับผิดชอบการปะทุของภูเขาไฟขนาดมหึมาบนไอโอ
_____________ เป็นดวงจันทร์กาลิเลียนสี่ดวงที่อยู่ไกลที่สุดจากดาวพฤหัสบดี
ความจริงที่ว่ายูโรปาโคจรรอบดาวพฤหัสบดีสองครั้งสำหรับทุก ๆ วงโคจรของแกนีมีดเป็นตัวอย่างของ (n) _______________


โลกเอียงมากที่สุดหรือไม่? - ดาราศาสตร์


Zetetic Astronomy โดย 'Parallax' (หลอก Samuel Birley Rowbotham), [1881] ที่ holy-texts.com

ความเหนือกว่าของอิควิโนกซ์

ทฤษฎีดาราศาสตร์โคเปอร์นิแกนหรือนิวโทเนียนกำหนดให้ "แกนโลกเอียง 23° 28´ ของสุริยุปราคา"

“และจากการสังเกตพบว่าดวงอาทิตย์ไม่ได้ตัดเส้นศูนย์สูตรในจุดเดียวกันทุกปี หากวันใดวันหนึ่งเขาตัดเส้นศูนย์สูตร ณ จุดใดจุดหนึ่ง ในวันเดียวกันในปีหน้า ปีหน้าก็ตัดอีกจุดหนึ่ง ตั้งอยู่ 50″.103 ทางตะวันตกของอดีต, และมาถึงจุดกลางวันเท่ากับ 20´ 23″ ก่อนเสร็จสิ้นการปฏิวัติของเขาในสวรรค์, หรือผ่านจากดาวฤกษ์ดวงหนึ่งไปยังอีกดวงหนึ่ง ดังนั้นปีเขตร้อนหรือปีที่แท้จริงของฤดูกาล, สั้นกว่าปีดาวฤกษ์ . . . ถอยหลังเข้าคลองทุกปี 50″.103 ทางทิศตะวันตก วิษุวัต

สร้างการปฏิวัติอย่างสมบูรณ์ใน 25,868 ปี ดังนั้นจุดแรกของราศีเมษซึ่งแต่เดิมเคยสัมพันธ์กับวิษุวัตวสันตวิษุวัตตอนนี้อยู่ทางทิศตะวันตกมากกว่า 30° แม้ว่าโดยการประชุมในหมู่นักดาราศาสตร์ก็จะตอบวิษุวัตเสมอ . . . การเปลี่ยนแปลงความเอียงของเส้นศูนย์สูตรต่อสุริยุปราคาได้รับการยืนยันจากการสังเกตของนักดาราศาสตร์โบราณและโดยการคำนวณ เราสามารถโน้มน้าวใจตัวเองได้โดยการเปรียบเทียบสถานการณ์จริงของดวงดาวกับสุริยุปราคากับสิ่งที่พวกมันครอบครองในสมัยก่อน ด้วยเหตุนี้เราจึงพบว่าตามคำให้การของคนในสมัยโบราณนั้นตั้งอยู่ทางเหนือของสุริยุปราคาใกล้ครีษมายัน บัดนี้ก้าวขึ้นไปทางเหนือมากกว่า และถอยห่างจากระนาบนี้ซึ่งอยู่ทางใต้ของสุริยุปราคา ใกล้ครีษมายัน ได้เข้าใกล้เครื่องบินลำนี้แล้ว และบางคนได้ผ่านไปแล้ว และเหนือกว่านั้นด้วย บนเส้นทางของพวกเขาไปทางเหนือ การเปลี่ยนแปลงที่ตรงกันข้ามเกิดขึ้นใกล้เหมายัน" 1

ว่าดวงอาทิตย์ไม่ได้ "ตัดเส้นศูนย์สูตร" ทุกปีในจุดเดียวกัน และว่า "ดาวซึ่งในสมัยก่อนซึ่งตั้งอยู่ทางเหนือของครีษมายันขณะนี้ สัมพันธ์กับตำแหน่งของดวงอาทิตย์แล้วเคลื่อนเข้าหาดวงอาทิตย์มากขึ้น ทิศเหนือ” ไม่ต้องสงสัยเลย แต่เพราะว่าโลกไม่ใช่ลูกโลก และไม่หมุนด้วยขวานหรือโคจรรอบดวงอาทิตย์ การเปลี่ยนแปลงเหล่านี้จึงไม่สามารถนำมาประกอบกับสิ่งที่เรียกว่า “ก่อนวิษุวัตได้” ตามที่ระบุไว้ในหน้า 105-9 ของงานนี้ว่าเส้นทางของดวงอาทิตย์อยู่เหนือโลกเสมอและมีศูนย์กลางที่ศูนย์กลางทางเหนือและระยะทางของเส้นทางประจำปีค่อยๆเพิ่มขึ้นนับตั้งแต่มีการสังเกต- -มากกว่าหนึ่งในสี่ของ of

ศตวรรษ. และเมื่อเราพิจารณาว่าในบริเตนใหญ่และประเทศต่างๆ ที่ยังคงอยู่ทางตอนเหนือมากกว่านั้น มีการพบหลักฐานว่าสภาพเขตร้อนที่เคยมีอยู่มาก่อน เราจำเป็นต้องสรุปว่าการค่อยๆ ขยายเส้นทางของดวงอาทิตย์ได้ดำเนินไปเป็นเวลาหลายศตวรรษ และในสมัยก่อนศูนย์กลางทางเหนือ และสถานที่ต่างๆ เช่น กรีนแลนด์ ไอซ์แลนด์ ไซบีเรีย &c. ซึ่งอยู่ห่างจากมันไม่ไกลมาก เป็นเขตร้อน

"ผู้คนได้ขุดลงไปบนพื้นโลกในสกอตแลนด์ และในแคนาดา ซึ่งแม้จะเย็นกว่านั้นก็ตาม เปล่าเลย แม้แต่บนชายฝั่งน้ำแข็งของอ่าว Baffin และบนเกาะ Melville ซึ่งเป็นพื้นที่ทางเหนือสุดของโลกที่มนุษย์เคยไปถึง พบแล้ว -- อะไรนะ ป่าฝังอันงดงาม และต้นไม้ขนาดมหึมา ที่ตอนนี้สามารถอยู่ได้ในประเทศที่อบอุ่นที่สุดของโลกเท่านั้น คือ ต้นปาล์ม และเฟิร์นขนาดมหึมา ซึ่งในสมัยของเรา แทบไม่มีแสงสว่างและความร้อนเพียงพอ เติบโตแม้ในเขตร้อนระอุ" 1

“ตามประวัติศาสตร์แล้ว เป็นที่ทราบกันดีว่าเมื่อมีการค้นพบกรีนแลนด์ มีภูมิอากาศที่อบอุ่นกว่าที่เป็นอยู่ในปัจจุบัน ก้อนน้ำแข็งได้แผ่ขยายลงมาทางใต้จากบริเวณขั้วโลกเป็นเวลาหลายศตวรรษ สาเหตุของการ นี้ไม่เข้าใจดี ความจริงเท่านั้นที่รู้" 2

จากผลตามธรรมชาติของการขยายเส้นทางของดวงอาทิตย์แบบเดียวกัน ทางใต้ต้องค่อยๆ เปลี่ยนไป น้ำค้างแข็งและความมืดลดน้อยลง และหลายคนประกาศว่าเป็นเช่นนี้จริงๆ

"สภาพอากาศนี้ดูเหมือนจะโดยทั่วไปแล้วจะอบอุ่นกว่ามากในขณะนี้ (1822) มากกว่าเมื่อสี่สิบปีก่อน . . . น้ำแข็งขนาดมหึมาถูกพบเป็นประจำทุกปีในละติจูด 50° S.

[ย่อหน้าต่อ] ระหว่างการเดินทางสามครั้งที่ฉันทำในทะเลเหล่านี้ ฉันไม่เคยเห็นน้ำแข็งทางใต้เคลื่อนตัวไปทางเหนือของจอร์เจียใต้ (54&องศา ซ.) ดังนั้นการเปลี่ยนแปลงครั้งใหญ่จึงต้องเกิดขึ้นในน้ำแข็งขั้วโลกใต้"1

เมื่อเปรียบเทียบการเดินทางทั้งทางเหนือและทางใต้ของนักเดินเรือยุคแรกสุด กับคำกล่าวของช่วงเวลาที่ผ่านมา หลักฐานโดยบังเอิญจำนวนมากพบว่ามีการเพิ่มขึ้นของความหนาวเย็นในภูมิภาคอาร์กติก และการลดลงที่สอดคล้องกันใน แอนตาร์กติก ดังนั้นเราจึงพบว่าการเปลี่ยนแปลงต่างๆ ที่เกิดจาก "ขบวนของ Equinoxes" นั้น แท้จริงแล้วเกิดจากการที่ดวงอาทิตย์ค่อยๆ เพิ่มขึ้นเรื่อยๆ จากใจกลางเมืองทางเหนือ และการเคลื่อนตัวไปทางทิศใต้ เส้นทางของดวงอาทิตย์เคลื่อนไปทางทิศใต้นานเท่าใด หรือเข้าใกล้ศูนย์กลางขั้วโลกเพียงใดเมื่อการเคลื่อนตัวเริ่มขึ้น หรือครั้งหนึ่งเคยอยู่ในแนวดิ่งหรือไม่ เป็นคำถามที่ยังไม่สามารถตอบได้ ถ้าดวงอาทิตย์มีตำแหน่งตั้งตรงเหนือศูนย์กลางทางเหนือ แน่นอน ย่อมไม่มีการเปลี่ยนแปลงของความร้อนและความเย็น หรือกลางวันและกลางคืน แต่เป็นหนึ่งวันตลอดกาลและฤดูร้อนเขตร้อน เป็นที่แน่ชัดแล้วว่าตั้งแต่กลางวันและกลางคืนเริ่มขึ้น ดวงอาทิตย์จะต้องเคลื่อนตัวในเส้นทางศูนย์กลางที่อยู่ห่างจากจุดศูนย์กลางขั้วโลกพอสมควร แต่เนื่องจากเส้นทางนั้นใกล้กว่าในปัจจุบันมาก ภาคเหนือทั้งหมดจึงต้อง เป็นเขตร้อน มีวันที่ยาวนาน และความมืดแทบไม่มีในตอนกลางคืน แต่กลางวันต่อเนื่องยาวนาน ร่อนลงมาอย่างนุ่มนวลในตอนเย็นหรือตอนพลบค่ำ และฤดูร้อนสลับกับฤดูใบไม้ผลิและฤดูใบไม้ร่วง แต่ไม่เคยมีความมืดและฤดูหนาว ดังนั้น

ด้วยกลางวันและกลางคืนที่น้อยนิด อุณหภูมิที่เปลี่ยนแปลงไปอย่างอ่อนโยน และแสงแดดที่ส่องลงมาเกือบตลอดเวลาที่ระดับความสูงพอสมควร ภูมิภาคนี้คงเต็มไปด้วยชีวิตสัตว์และพืชผักที่มีลักษณะสวยงามที่สุด ทุกอย่างต้องได้รับการพัฒนาด้วยโครงสร้างที่สมบูรณ์แบบที่สุด สีสันสดใสที่สุด พลังทางกายภาพที่ยิ่งใหญ่ที่สุด และความสามารถทางศีลธรรมและจิตใจที่เข้มข้นที่สุด พื้นที่ดังกล่าวต้องไม่น้อยกว่าสวรรค์ สวยงามและสมบูรณ์แบบเท่าที่เคยบันทึกไว้ในหนังสือศักดิ์สิทธิ์ของนักเทววิทยาโบราณ หรือที่ซึ่งจิตใจของมนุษย์สามารถตั้งครรภ์ได้ในตอนนี้ มีการอ้างอิงบ่อยครั้งและเป็นเอกพจน์ที่พบในหนังสือ ตำนาน และกวีศักดิ์สิทธิ์ของชาติต่างๆ ทางเหนือว่าเป็นที่พำนักของสิ่งมีชีวิตที่มีความสุข มีอำนาจ และชาญฉลาดอย่างสูง


พื้นผิวโลกคือ ไม่พูดอย่างจริงจัง กรอบอ้างอิงเฉื่อย วัตถุที่อยู่นิ่งเมื่อเทียบกับพื้นผิวโลกจริง ๆ แล้วได้รับผลกระทบจากแรงเฉื่อย เช่น แรงสมมติ (โคริโอลิส แรงเหวี่ยง ฯลฯ) เนื่องจากการหมุนของโลก การเคลื่อนตัว และความเร่งแบบอื่นๆ

อย่างไรก็ตาม เมื่อแก้ปัญหาฟิสิกส์ เรามักจะถือว่ากรอบโลกเป็นเฉื่อย ทั้งนี้เป็นเพราะผลกระทบเฉื่อยคือ จิ๋ว สำหรับประสบการณ์และการทดลองในแต่ละวันของเราส่วนใหญ่ ตัวอย่างเช่น วัตถุในเส้นศูนย์สูตรคือวัตถุที่อยู่ภายใต้แรงเหวี่ยงหนีศูนย์กลางที่แรงที่สุด และมีน้ำหนักเพียง $3 imes10^<-3>$ หรือ .3\%$ ของน้ำหนักเท่านั้น

ดังนั้น โดยส่วนใหญ่แล้ว หากการทดลองสั้นเพียงพอและเกิดขึ้นในพื้นที่ที่มีขนาดเล็กเพียงพอ พื้นผิวของโลกสามารถประมาณให้ใกล้เคียงกับกรอบอ้างอิงเฉื่อยได้ เนื่องจากผลกระทบต่อผลการทดสอบนั้นเล็กมาก

แน่นอนว่ามีข้อยกเว้นดังที่อ้างถึงในคำตอบของ njspeer

อย่างไรก็ตาม หากคำว่า "โลก" หมายถึงกรอบอ้างอิงในศูนย์กลางของโลก มันเป็นกรอบเฉื่อยตามทฤษฎีสัมพัทธภาพทั่วไป (GR) เนื่องจากผู้สังเกตการณ์ในภาวะตกอย่างอิสระจะมีค่าเฉื่อยใน GR ที่จริงแล้วโลกมีความเร่งที่เหมาะสมเนื่องจากแรงภายนอก เช่น ความดันการแผ่รังสี แต่ก็มีผลเพียงเล็กน้อยเช่นกัน


คุณชอบพื้นผิวแข็งของโลกและสภาพอากาศที่มีแนวโน้มว่าจะมีชีวิตหรือไม่? ขอบคุณดาวโชคดี (ใหญ่) ของคุณ

ANN ARBOR พื้นผิวแข็งของโลกและสภาพอากาศปานกลาง ส่วนหนึ่งอาจเกิดจากดาวมวลมากในสภาพแวดล้อมกำเนิดของดวงอาทิตย์ ตามการจำลองด้วยคอมพิวเตอร์แบบใหม่ของการก่อตัวดาวเคราะห์

หากปราศจากธาตุกัมมันตภาพรังสีของดาวฤกษ์ที่ถูกฉีดเข้าไปในระบบสุริยะยุคแรก ดาวเคราะห์บ้านเกิดของเราอาจเป็นโลกมหาสมุทรที่ไม่เป็นมิตรซึ่งปกคลุมไปด้วยแผ่นน้ำแข็งทั่วโลก

"ผลของการจำลองของเราชี้ให้เห็นว่ามีระบบดาวเคราะห์ที่แตกต่างกันในเชิงคุณภาพสองประเภท" ทิม ลิคเทนเบิร์กแห่งศูนย์ความสามารถแห่งชาติในการวิจัยดาวเคราะห์ในสวิตเซอร์แลนด์กล่าว "มีระบบสุริยะที่คล้ายกับระบบสุริยะของเรา ซึ่งดาวเคราะห์มีน้ำน้อย และดาวเคราะห์ที่กำเนิดโลกในมหาสมุทรเป็นหลัก เนื่องจากไม่มีดาวมวลสูงอยู่รอบ ๆ เมื่อระบบกำเนิดของพวกมัน"

Lichtenberg และเพื่อนร่วมงาน ซึ่งรวมถึง Michael Meyer นักดาราศาสตร์จากมหาวิทยาลัยมิชิแกน รู้สึกทึ่งในขั้นต้นกับบทบาทของดาวฤกษ์มวลสูงที่อาจปรากฏบนการก่อตัวของดาวเคราะห์

เมเยอร์กล่าวว่าการจำลองช่วยแก้ปัญหาบางคำถามในขณะที่เพิ่มคำถามอื่น ๆ

"เป็นเรื่องดีที่รู้ว่าธาตุกัมมันตภาพรังสีสามารถช่วยให้ระบบเปียกแห้ง และมีคำอธิบายว่าเหตุใดดาวเคราะห์ในระบบเดียวกันจึงมีคุณสมบัติคล้ายคลึงกัน" เมเยอร์กล่าว

"แต่ความร้อนจากกัมมันตภาพรังสีอาจไม่เพียงพอ เราจะอธิบายโลกของเราที่แห้งมากได้อย่างไร เมื่อเทียบกับดาวเคราะห์ที่ก่อตัวในแบบจำลองของเรา บางทีการมีดาวพฤหัสบดีในที่ที่มันเป็นสิ่งสำคัญในการรักษาวัตถุที่เป็นน้ำแข็งส่วนใหญ่ให้พ้นจากระบบสุริยะชั้นใน"

นักวิจัยกล่าวว่าในขณะที่น้ำครอบคลุมพื้นที่มากกว่าสองในสามของพื้นผิวโลก ในแง่ดาราศาสตร์ ดาวเคราะห์ชั้นในของระบบสุริยะของเรานั้นแห้งแล้งมาก แต่โชคดีที่สิ่งดีมากเกินไปอาจทำอันตรายมากกว่าดีได้

ดาวเคราะห์ทุกดวงมีแกนกลาง เสื้อคลุม (ชั้นใน) และเปลือกโลก หากปริมาณน้ำของดาวเคราะห์ที่เป็นหินมีมากกว่าบนโลก เสื้อคลุมนั้นก็ถูกปกคลุมด้วยมหาสมุทรโลกที่ลึกและลึก และชั้นน้ำแข็งที่ไม่อาจผ่านเข้าไปได้บนพื้นมหาสมุทร สิ่งนี้จะป้องกันกระบวนการธรณีเคมี เช่น วัฏจักรคาร์บอนบนโลก ที่ทำให้สภาพอากาศคงที่และสร้างสภาพพื้นผิวที่เอื้อต่อสิ่งมีชีวิตอย่างที่เราทราบ

นักวิจัยได้พัฒนาแบบจำลองคอมพิวเตอร์เพื่อจำลองการก่อตัวของดาวเคราะห์จากหน่วยการสร้างของพวกมัน ซึ่งเรียกว่าดาวเคราะห์เนซิมัล (planetesimals) ซึ่งเป็นวัตถุที่มีลักษณะเป็นหินน้ำแข็งซึ่งมีขนาดหลายสิบกิโลเมตร ในระหว่างการกำเนิดของระบบดาวเคราะห์ ดาวเคราะห์ก่อตัวเป็นจานฝุ่นและก๊าซรอบๆ ดาวฤกษ์อายุน้อยและเติบโตเป็นตัวอ่อนของดาวเคราะห์

เครื่องยนต์ความร้อนกัมมันตภาพรังสี

เนื่องจากดาวเคราะห์เหล่านี้ถูกทำให้ร้อนจากภายใน ปริมาณน้ำแข็งในน้ำเริ่มแรกบางส่วนจะระเหยและหลบหนีออกสู่อวกาศก่อนที่จะถูกส่งไปยังดาวเคราะห์เอง

ความร้อนภายในนี้อาจเกิดขึ้นไม่นานหลังจากการกำเนิดของระบบสุริยะของเราเมื่อ 4.6 พันล้านปีก่อน ตามร่องรอยยุคดึกดำบรรพ์ในอุกกาบาต และอาจยังคงดำเนินต่อไปในหลายพื้นที่

เมื่อ Proto-Sun ก่อตัวขึ้น ซุปเปอร์โนวาก็เกิดขึ้นในย่านจักรวาล ธาตุกัมมันตภาพรังสี รวมทั้งอะลูมิเนียม-26 ถูกหลอมรวมเข้ากับดาวมวลมากที่กำลังจะตายนี้ และถูกฉีดเข้าไปในระบบสุริยะอายุน้อยของเรา ไม่ว่าจะมาจากลมดาวฤกษ์มากเกินไปหรือผ่านทางซูเปอร์โนวาที่พุ่งออกมาหลังการระเบิด

นักวิจัยกล่าวว่าการคาดการณ์เชิงปริมาณจากงานนี้จะช่วยให้กล้องโทรทรรศน์อวกาศในอนาคตอันใกล้นี้ ทุ่มเทให้กับการล่าดาวเคราะห์นอกระบบ เพื่อติดตามร่องรอยที่อาจเกิดขึ้นและความแตกต่างในองค์ประกอบของดาวเคราะห์ และปรับแต่งความหมายที่คาดการณ์ไว้ของกลไกการคายน้ำ Al-26

พวกเขากำลังรอคอยอย่างใจจดใจจ่อรอการเปิดตัวของภารกิจอวกาศที่จะเกิดขึ้น ซึ่งจะสามารถสังเกตดาวเคราะห์นอกระบบขนาดเท่าโลกนอกระบบสุริยะของเราได้ สิ่งเหล่านี้จะทำให้มนุษยชาติใกล้ชิดยิ่งขึ้นในการทำความเข้าใจว่าดาวเคราะห์บ้านเกิดของเรามีอยู่จริงหรือไม่ หรือมี "an อินฟินิตี้ของโลกประเภทเดียวกับโลกของเราหรือไม่"

การศึกษาของพวกเขาปรากฏในดาราศาสตร์ธรรมชาติ นักวิจัยคนอื่นๆ รวมถึงนักวิจัยจากสถาบันเทคโนโลยีแห่งสหพันธรัฐสวิส มหาวิทยาลัยไบรอยท์ และมหาวิทยาลัยเบิร์น


ครีษมายัน

บรรณาธิการของเราจะตรวจสอบสิ่งที่คุณส่งมาและตัดสินใจว่าจะแก้ไขบทความหรือไม่

ครีษมายันสองช่วงเวลาระหว่างปีที่เส้นทางของดวงอาทิตย์บนท้องฟ้าอยู่ทางเหนือสุดในซีกโลกเหนือ (20 หรือ 21 มิถุนายน) หรือทางใต้สุดในซีกโลกใต้ (21 หรือ 22 ธันวาคม)

ในครีษมายัน ดวงอาทิตย์เดินทางในเส้นทางที่ยาวที่สุดผ่านท้องฟ้า และวันนั้นจึงมีแสงกลางวันมากที่สุด เมื่อครีษมายันเกิดขึ้นในซีกโลกเหนือ ขั้วโลกเหนือจะเอียงไปทางดวงอาทิตย์ประมาณ 23.4° (23°27´) เนื่องจากรังสีของดวงอาทิตย์เคลื่อนไปทางเหนือจากเส้นศูนย์สูตรในปริมาณเท่ากัน รังสีเที่ยงตรงในแนวตั้งจึงอยู่เหนือศีรษะโดยตรงที่ Tropic of Cancer (23°27´N) หกเดือนต่อมา ขั้วโลกใต้เอียงไปทางดวงอาทิตย์ประมาณ 23.4° ในวันที่ครีษมายันในซีกโลกใต้นี้ รังสีเหนือศีรษะแนวตั้งของดวงอาทิตย์เคลื่อนตัวไปยังตำแหน่งใต้สุดของพวกมัน นั่นคือ Tropic of Capricorn (23°27´ S)

ตามคำจำกัดความทางดาราศาสตร์ของฤดูกาล ครีษมายันยังเป็นจุดเริ่มต้นของฤดูร้อนอีกด้วย ซึ่งกินเวลาจนถึงฤดูใบไม้ร่วงที่กลางวันเท่ากับกลางคืน (22 หรือ 23 กันยายนในซีกโลกเหนือ หรือ 20 หรือ 21 มีนาคมในซีกโลกใต้) วันนี้ยังมีการเฉลิมฉลองในหลายวัฒนธรรม ตัวอย่างเช่น ในสแกนดิเนเวีย วันหยุดของ Midsummer's Eve ตรงกับวันหยุดสุดสัปดาห์ใกล้กับครีษมายัน

บรรณาธิการสารานุกรมบริแทนนิกา บทความนี้ได้รับการแก้ไขและปรับปรุงล่าสุดโดย Adam Augustyn บรรณาธิการบริหาร เนื้อหาอ้างอิง


บทที่ 3

ถ้าปล่อยให้ลูกบอลหล่นจากหัวเสาของเรือในขณะที่หยุดนิ่ง มันจะกระทบพื้นดาดฟ้าที่ปลายเสากระโดง If the same experiment is tried with a ship in motion, the same result will follow because, in the latter case, the ball is acted upon simultaneously by two forces at right angles to each other--one, the momentum given to it by the moving ship in the direction of its own motion and the other, the force of gravity, the direction of which is at right angles to that of the momentum. The ball being acted upon by the two forces together, will not go in the direction of either, but will take a diagonal course, as shown in the following diagram, fig. 46.

The ball passing from A to C, by the force of gravity, and having, at the moment of its liberation, received a momentum . from the moving ship in the direction A, B, will, by the conjoint action of the two forces A, B, and A, C, take the direction A, D, falling at D, just as it would have fallen at C, had the vessel remained at rest.

It is argued by those who hold that the earth is a revolving globe, that if a ball is dropped from the mouth of a deep mine, it reaches the bottom in an apparently vertical direction, the same as it would if the earth were motionless. In the same way, and from the same cause, it is said that a ball allowed to drop from the top of a tower, will fall at the base. Admitting the fact that a ball dropped down a mine, or let fall from a high tower, reaches the bottom in a direction parallel to the side of either, it does not follow therefrom that the earth moves. It only follows that the earth อาจ move, and yet allow of such a result. It is certain that such a result would occur on a stationary earth and it is mathematically demonstrable that it would also occur on a revolving earth but the question of motion or non-motion--of which is the fact it does not decide. It gives no proof that the ball falls in a vertical or in a diagonal direction. Hence, it is logically valueless. We must begin the enquiry with an experiment which does not involve a supposition or an ambiguity, but which will decide whether motion does actually or actually does not exist. It is certain, then, that the path of a ball, dropped from the mast-head of a stationary ship will be vertical. It is also certain that, dropped down a deep mine, or from the top of a high

tower, upon a stationary earth, it would be vertical. It is equally certain that, dropped from the mast-head of a moving ship, it would be diagonal so also upon a moving earth it would be diagonal. And as a matter of necessity, that which follows in one case would follow in every other case, if, in each, the conditions were the same. Now let the experiment shown in fig. 46 be modified in the following way:--

Let the ball be thrown upwards from the mast-head of a stationary ship, and it will fall back to the mast-head, and pass downwards to the foot of the mast. The same result would follow if the ball were thrown upwards from the mouth of a mine, or the top of a tower, on a stationary earth. Now put the ship in motion, and let the ball be thrown upwards. It will, as in the first instance, partake of the two motions--the upward or vertical, A, C, and the horizontal, A, B, as shown in fig. 47 but

because the two motions act conjointly, the ball will take the diagonal direction, A, D. By the time the ball has arrived at

[paragraph continues] D, the ship will have reached the position, 13 and now, as the two forces will have been expended, the ball will begin to fall, by the force of gravity alone, in the vertical direction, D, B, H but during its fall towards H, the ship will have passed on to the position S, leaving the ball at H, a given distance behind it.

The same result will be observed on throwing a ball upwards from a railway carriage, when in rapid motion, as shown in the following diagram, fig. 48. While the carriage or tender passes

from A to B, the ball thrown upwards, from A towards (2, will reach the position D but during the time of its fall from D to B, the carriage will have advanced to S, leaving the ball behind at B, as in the case of the ship in the last experiment.

The same phenomenon would be observed in a circus, during the performance of a juggler on horseback, were it not that the balls employed are thrown more or less forward, according to the rapidity of the horse's motion. The juggler standing in the ring, on the solid ground, throws his balls as vertically as he can, and they return to his hand but when on the back of a rapidly-moving horse, he should throw the balls vertically, before they fell

back to his hands, the horse would have taken him in advance, and the whole would drop to the ground behind him. It is the same in leaping from the back of a horse in motion. The performer must throw himself to a certain degree forward. If he jumps directly upwards, the horse will go from under him, and he would fall behind.

Thus it is demonstrable that, in all cases where a ball is thrown upwards from an object moving at right angles to its path, that ball will come down to a place behind the point from which it was thrown and the distance at which it falls behind depends upon the time the ball has been in the air. As this is the result in every instance where the experiment is carefully and specially performed, the same would follow if a ball were discharged from any point upon a revolving earth. The causes or conditions operating being the same, the same effect would necessarily follow.

The experiment shown in fig. 49, demonstrates, however, that

these causes, or conditions, or motion in the earth, do not exist.

[paragraph continues] A strong cast-iron cannon was placed with the muzzle upwards. The barrel was carefully tested with a plumb line, so that its true vertical direction was secured and the breech of the gun was firmly embedded in sand up to the touch-hole, against which a piece of slow match was placed. The cannon had been loaded with powder and ball, previous to its position being secured. At a given moment the slow match at D was fired, and the operator retired to a shed. The explosion took place, and the ball was discharged in the direction A, B. In thirty seconds the ball fell back to the earth, from B to C the point of contact, C, was only 8 inches from the gun, A. This experiment has been many times tried, and several times the ball fell back upon the mouth of the cannon but the greatest deviation was less than 2 feet, and the average time of absence was 28 seconds from which it is concluded that the earth on which the gun was placed did not move from its position during the 28 seconds the ball was in the atmosphere. Had there been motion in the direction from west to east, and at the rate of 600 miles per hour (the supposed velocity in the latitude of England), the result would have been as shown in fig. 49. The ball, thrown by the powder in the direction A, C, and acted on at the same moment by the earth's motion in the direction A, B, would take the direction A, D meanwhile the earth and the cannon would have reached the position B, opposite to D. On the ball beginning to descend, and during the time of its descent, the gun would have passed on to the position S, and the ball would have dropped at B, a consider-able distance behind the point S. As the average time of the ball's absence in the atmosphere was 28 seconds--14 going upwards, and 14 in falling--we have only to multiply the time by the supposed velocity of the earth, and we find that instead of the ball coming down to within a few inches of the

muzzle of the gun, it should have fallen behind it a distance of 8400 feet, or more than a mile and a half! Such a result is utterly destructive of the idea of the earth's possible rotation.

The reader is advised not to deceive himself by imagining that the ball would take a parabolic course, like the balls and shells from cannon during a siege or battle. The parabolic curve could only be taken by a ball fired from a cannon inclined more or less from the vertical when, of course, gravity acting in an angular direction against the force of the gunpowder, the ball would be forced to describe a parabola. But in the experiment just detailed, the gun was fixed in a perfectly vertical direction, so that the ball would be fired in a line the very contrary to the direction of gravity. The force of the powder would drive it directly upwards, and the force of gravity would pull it directly downwards. Hence it could only go up in a right line, and down or back to its starting point it could not possibly take a path having the slightest degree of curvature. It is therefore demanded that, if the earth has a motion from west to east, a ball, instead of being dropped down a mine, or allowed to fall from the top of a tower, shall be shot upwards into the air, and from the moment of its beginning to descend, the surface of the earth shall turn from under its direction, and it would fall behind, or to the west of its line of descent. On making the most exact experiments, however, no such effect is observed and, therefore, the conclusion is in every sense unavoidable, that THE EARTH HAS NO MOTION OF ROTATION.

EXPERIMENT 3.

When sitting in a rapidly-moving railway carriage, let a spring-gun 1 be fired forward, or in the direction in which the train is moving. Again, let the same gun be fired, but in the opposite direction and it will be found that the ball or other projectile will always go farther in the first case than in the latter.

If a person leaps backwards from a horse in full gallop, he cannot jump so great a distance as he can by jumping forward. Leaping from a moving sledge, coach, or other object, backwards or forwards, the same results are experienced.

Many other practical cases could be cited to show that any body projected from another body in motion, does not exhibit the same behaviour as it does when projected from a body at rest. Nor are the results the same when projected in the same direction as that in which the body moves, as when projected in the opposite direction because, in the former case, the projected body receives its momentum from the projectile force, plus that given to it by the moving body and in the latter case, this momentum, minus that of the moving body. Hence it would be found that if the earth is a globe, and moving rapidly from west to east, a cannon fired in a due easterly direction would send a ball to a greater distance than it would if fired in a due westerly direction. But the most experienced artillerymen--many of whom have had great practice, both at home and abroad, in almost every latitude--have declared that no difference whatever is

observable. That in charging and pointing their guns, no, difference in the working is ever required, notwithstanding that the firing is at every point of the compass. Gunners in war ships have noticed a considerable difference in the results of their firing from guns at the bow, when sailing rapidly towards the object fired at, and when firing from guns placed at the stern while sailing away from the object: and in both cases the results are different to those observed when firing from a ship at perfect rest. These details of practical experience are utterly incompatible with the supposition of a revolving earth.

During the period of the Crimean War, the subject of gunnery, in connection with the earth's rotation, was one which occupied the attention of many philosophers, as well as artillery officers and statesmen. About this time, Lord Palmerston, as Prime Minister, wrote the following letter to Lord Panmure, the Secretary for War:--

"There is an investigation which it would be important and at the same time easy to make, and that is, whether the rotation of the earth on its axis has any effect on the curve of a cannon-ball in its flight. One should suppose that it has, and that while the cannon-ball is flying in the air, impelled by the gunpowder in a straight line from the cannon's mouth, the ball would not follow the rotation of the earth in the same manner which it would do if lying at rest on the earth's surface. If this be so, a ball fired in the meridional direction--that is to say, due south or due north--ought to deviate to the west of the object at which it was.

aimed, because during the time of flight, that object will have gone to the east somewhat faster than the cannon-ball will have done. In like manner, a ball fired due east, ought to fly less far upon the earth's surface than a ball fired due west, the charges being equal, the elevation the same, and the atmosphere perfectly still. It must be remembered, however, that the ball, even after it has left the cannon's mouth, will retain the motion from west to east which it had before received by the rotation of the earth on whose surface it was and it is possible, therefore, that, except at very long ranges, the deviations above mentioned may in practice turn out to be very small, and not deserving the attention of an artilleryman. The trial might be easily made in any place in which a free circle of a mile or more radius could be obtained and a cannon placed in the centre of that circle, and fired alternately north, south, east, and west, with equal charges, would afford the means of ascertaining whether each shot flew the same distance or not.

The above letter was published, by Lord Dalhousie's permission, in the "Proceedings of the Royal Artillery Institution for 1867."

It will be observed that Lord Palmerston thought that firing eastwards, or in the direction of the earth's supposed rotation, the ball would "fly less far upon the earth's surface than a ball fired due west." It is evident that his Lordship did not allow for the extra impulse given to the ball by the earth's motion. But the answer given by the advocates of the theory of the earth's motion is the following: Admitting that a ball fired from the

โลก at rest would go, say สอง miles, the same ball, fired from the earth in motion, would go, say three miles but during the time the ball is passing through the air, the earth will advance one mile in the same direction. This one mile deducted from the three miles which the ball actually passes through the air, leaves the two miles which the ball has passed in advance of the cannon so that practically the distance to which a ball is projected is precisely the same upon a moving earth as it is upon the earth at rest. The following diagram, fig. 50, will illustrate the path of a ball under the conditions above described.

Let the curved line A, B, represent the distance a ball would fly from a cannon placed at A, upon the earth, at rest. Let A, C, represent the distance the same ball would fly from the conjoint action of the powder in the cannon, A, and the earth's rotation in the direction A, C. During the time the ball would require to traverse the line A, C, the earth and the cannon would arrive at the point D hence the distance D, C, would be the same as the distance A, B.

The above explanation is very ingenious, and would be perfectly satisfactory if other considerations were not involved in it. For instance, the above explanation does not prove the earth's motion--it merely supposes it but

as in all other cases where the result of supposition is explained, it creates a dilemma. It demands that during the time the ball is in the air, the cannon is advancing in the direction of the supposed motion of the earth. But -this is granting the conditions required in the experiments represented by figs. 47, 48, and 49. If the cannon can advance in the one case, it must in the other and as the result in the experiment represented at fig. 49, was that the ball, when fired vertically, essentially returned to the vertical cannon that cannon could not have advanced, and therefore the earth could not have moved.

EXPERIMENT 4.

Take a large grinding stone, and let the whole surface of the rim be well rubbed over with a saturated solution of phosphorus in olive oil or cover the stone with several folds of coarse woollen cloth or flannel, which saturate with boiling water. If it be now turned rapidly round, by means of a multiplying wheel, the phosphoric vapour, or the steam from the flannel, which surrounds it and which may be called its atmosphere--analogous to the atmosphere of the earth--will be seen to follow the direction of the revolving surface. Now the surface of the earth is very irregular in its outline, mountains rising several miles above the sea, and ranging for hundreds of miles in every possible direction rocks, capes, cliffs, gorges, defiles, caverns, immense forests, and every other form of ruggedness and irregularity calculated to adhere to and drag along whatever medium may exist upon it: and if it is a globe revolving on its axis, with

the immense velocity at the equator of more than a thousand miles an hour, it is exceedingly difficult if not altogether impossible to conceive of such a mass moving at such a rate, and yet not taking the atmosphere along with it. When it is considered, too, that the medium which it is said surrounds the earth and all the heavenly bodies, and filling all the vast spaces between them, is almost too ethereal and subtle to offer any sensible resistance, it is still more difficult to understand how the atmosphere can be prevented being carried forward with the earth's rapidly revolving surface. Study the details of pneumatics or hydraulics as we may, we cannot suggest an experiment which will show the possibility of such a thing. Hence we are compelled to conclude that if the earth revolves, the atmosphere revolves also, and in the same direction. If the atmosphere rushes forward from west to east continually, we are again obliged to conclude that whatever floats or is suspended in it, at any altitude, must of necessity partake of its eastward motion. A piece of cork, or any other body floating in still water, will be motionless, but let the water be put in motion, in any direction whatever, and the floating bodies will move with it, in the same direction and with the same velocity. Let the experiment be tried in every possible way, and these results will invariable follow. Hence if the earth's atmosphere is in constant motion from west to east, all the different strata which are known to exist in it, and all the various kinds of clouds and vapours which float in it must of mechanical necessity move rapidly eastwards. But what is the fact? If we fix upon any star as a standard or datum outside the visible atmosphere, we may sometimes observe a stratum of clouds going for hours together in a direction the very opposite to that in which the earth is supposed to be moving. See fig. 51, which represents a section of a

globe, surrounded with an atmosphere, moving at the rate of 1042 miles an hour at the equator, and in the direction of the arrows 1, 2, 3, while a stream of clouds are moving in the opposite direction, as indicated by the arrows, 4, 5, 6. Not only may a stratum of clouds be seen moving rapidly from east to west, but at the same moment other strata may often be seen moving from north to south, and from south to north. It is a fact well known to aeronauts, that several strata of atmospheric air are often moving in as many different directions at the same time. It is a knowledge of this fact which leads an experienced aeronaut, when desiring to rise in a balloon, and to go in a certain direction, not to regard the manner in which the wind is blowing on the immediate surface of the earth, because he knows that at a greater altitude, it may be going at right angles, or even in opposite and in various ways simultaneously. To ascertain whether and at what altitude a current is blowing in the desired direction, small, and so-called "pilot-balloons" are often sent up and carefully observed in their ascent. If during the passage of one of these through the variously moving

strata, it is seen to enter a current which is going in the direction desired by the aëronaut, the large balloon is then ballasted in such a manner that it may ascend at once to the altitude of such current, and thus to proceed on its journey.

On almost any moonlight and cloudy night, different strata may be seen not only moving in different directions but, at the same time, moving with different velocities some floating past the face of the moon rapidly and uniformly, and others passing gently along, sometimes becoming stationary, then starting fitfully into motion, and often standing still for minutes together. Some of those who have ascended in balloons for scientific purposes have recorded that as they have rapidly passed through the atmosphere, they have gone though strata differing in temperature, in density, and in hygrometric, magnetic, electric, and other conditions. These changes have been noticed both in ascending and descending, and in going for miles together at the same altitude.

"On the 27th November, 1839, the sky being very clear, the planet Venus was seen near the zenith, notwithstanding the brightness of the meridian sun. It enabled us to observe the higher stratum of clouds to be moving in an exactly opposite direction to that of the wind--a circumstance which is frequently recorded in our meteorological journal both in the north-east and south-east trades, and has also often been observed by former voyagers. Captain Basil Hall witnessed it from the summit of the Peak of Teneriffe and Count Strzelechi, on ascending the volcanic mountain of Kiranea, in Owhyhee, reached at 4000 feet an elevation above that of the trade wind, and experienced the influence of an opposite current of air of a

different hygrometric and thermometric condition. . . . Count Strzelechi further informed me of the following seemingly anomalous circumstance--that at the height of 6000 feet he found the current of air blowing at right angles to both the lower strata, also of a different hygrometric and thermometric condition, but warmer than the inter-stratum." 1

Such a state of the atmosphere is compatible only with the fact which other evidence has demonstrated, that the earth is at rest. Were it otherwise-if a spherical mass of eight thousand miles in diameter, with an atmosphere of only fifty miles in depth, or relatively only as a sheet of note paper pasted upon a globe of one yard in diameter, and lying upon a rugged, adhesive, rapidly revolving surface, there is nothing to prevent such an atmosphere becoming a mingled homogeneous mass of vapour.

Notwithstanding that all practical experience, and all specially instituted experiments are against the possibility of a moving earth, and an independent moving and non-moving atmosphere, many mathematicians have endeavoured to "demonstrate" that with regard to this earth, such was actually the case. The celebrated philosophic divine, Bishop Wilkins, was reasoned by the theorists of his day into this belief and, in consequence, very naturally suggested a new and easy way of travelling. He proposed that large balloons should be provided with apparatus to work against the varying currents of the air. On ascending to a proper altitude, the balloon was to be kept practically in a state of rest, while the earth revolved underneath it and when the desired locality came into view, to stop the working of

the fans, &c., to let out the gas, and drop down at once to the earth's surface. In this simple way New York would be reached in a few hours, or rather New York would reach the balloon, at the rate, in the latitude of England, of more than 600 miles an hour.

The argument involved in the preceding remarks against the earth's rotation has often been met by the following, at first sight, plausible statement. A ship with a number of passengers going rapidly in one continued direction, like the earth's atmosphere, could nevertheless have upon its deck a number of distinctly and variously moving objects, like the clouds in the atmosphere. The clouds in the atmosphere are compared to the passengers on the deck of a ship so far the cases are sufficiently parallel, but the passengers are sentient beings, having within themselves the power of distinct and independent motions: the clouds are the reverse and here the parallelism fails. One case is not illustrative of the other, and the supposition of rotation in the earth remains without a single fact or argument in its favour. Birds in the air, or fish and reptiles in the water, would have offered a parallel and illustrative case, but these, like the passengers on the ship's deck, are sentient and independent beings clouds and vapours are dependent and non-sentient, and must therefore of necessity move with, and in the direction of, the medium in which they float.

Everything actually observable in Nature every argument furnished by experiment every legitimate process of reasoning and, as it would seem, everything which it is possible for the human mind practically to conceive, combine

in evidence against the doctrine of the earth's motion upon axes.

ORBITAL MOTION.--The preceding experiments and remarks, logically and mathematically suffice as evidence against the assumed motion of the earth in an orbit round the sun. It is difficult, if not impossible, to understand how the behaviour of the ball thrown from a vertical gun should be other in relation to the earth's forward motion in space, than it is in regard to its motion upon axes. Besides, it is demonstrable that it does not move upon axes, and therefore, the assumption that it moves in an orbit, is utterly useless for theoretical purposes. The explanation of phenomena, for which the theory of orbital and diurnal motion was framed, is no longer possible with a globular world rushing through space in a vast elliptical orbit, but without diurnal rotation. Hence the earth's supposed orbital motion is logically void, and non-available, and there is really no necessity for either formally denying it, or in any way giving it further consideration. But that no point may be taken without direct and practical evidence, let the following experiment be tried.

Take two carefully-bored metallic tubes, not less than six feet in length, and place them one yard asunder, on the opposite sides of a wooden frame, or a solid block of wood or stone: so adjust them that their centres or axes of vision shall be perfectly parallel to each other. The following diagram will show the arrangement.

Now, direct them to the plane of some notable fixed star, a few seconds previous to its meridian time. Let an observer be stationed at each tube, as at A, B and the moment the star appears in the tube A, T, let a loud knock or other signal be given, to be repeated by the observer at the tube B, T, when he first sees the same star. A distinct period of time will elapse between the signals given. The signals will follow each other in very rapid succession, but still, the time between is sufficient to show that the same star, S, is not visible at the same moment by two parallel lines of sight A, S, and B, C, when only one yard asunder. A slight inclination of the tube, B, C, towards the first tube A, S, would be required for the star, S, to be seen through both tubes at the same instant. Let the tubes remain in their position for six months at the end of which time the same observation or experiment will produce the same results--the star, S, will be visible at the same meridian time, without the slightest alteration being required in the direction of the tubes: from which it is concluded that if the earth had moved one single yard in an orbit through space, there would at least be observed the slight inclination of the tube, B, C, which the difference in position of one yard had previously required.

[paragraph continues] But as no such difference in the direction of the tube B, C, is required, the conclusion is unavoidable, that in six months a given meridian upon the earth's surface does not move a single yard, and therefore, that the earth has not the slightest degree of orbital motion.

Copernicus required, in his theory of terrestrial motions, that the earth moved in an extensive elliptical path round the sun, as represented in the following diagram, fig 53, where S is the

sun, A, the earth in its place in June, and B, its position in December when desired to offer some proof of this orbital motion he suggested that a given star should be selected for observation on a given date and in six months afterwards a second observation of the same star should be made. The first observation A, D, fig. 53, was recorded and on observing again at the end of six months, when the earth was supposed to have passed to B, the other side of its orbit, to the astonishment of the assembled astronomers, the star was observed in exactly the

same position, B, C, as it had been six months previously! It was expected that it would be seen in the direction B, D, and that this difference in the direction of observation would demonstrate the earth's motion from A to B, and also furnish, with the distance A, S, B, the elements necessary for calculating the actual distance of the star D.

The above experiment has many times been tried, and always with the same general result. No difference whatever has been observed in the direction of the lines of sight A, D, and B, C, whereas every known principle of optics and geometry would require, that if the earth had really moved from A to B, the fixed star D, should be seen in the direction B, D. The advocates of this hypothesis of orbital motion, instead of being satisfied, from the failure to detect a difference in the angle of observation, that the earth could not possibly have changed its position in the six months, were so regardless of all logical consistency, that instead of admitting, and accepting the consequences, they, or some of them, most unworthily declared that they could not yield up the theory, on account of its apparent value in explaining certain phenomena, but demanded that the star D, was so vastly distant, that, notwithstanding that the earth must have moved from A to B, this great change of position would not give a readable difference in the angle of observation at B, or in other words the amount of parallax (" annual parallax," it was called) was inappreciable!

Since the period of the above experiments, many have declared that a very small amount of "annual parallax" has been detected. But the proportion given by different observers has been so various, that nothing definite and satisfactory can yet be decided upon. Tycho Brahe, Kepler, and others, rejected the Copernican theory, principally

eon account of the failure to detect displacement or parallax of the fixed stars. Dr. Bradley declared that what many had called "parallax," was merely "aberration." But "Dr. Brinkley, in 1810, from his observations with a very fine circle in the Royal Observatory of Dublin, thought he had detected a parallax of 1″ in the bright star Lyra (corresponding to an annual displacement of 2″). This, however, proved to be illusory and it was not till the year 1839, that Mr. Henderson, having returned from filling the situation of astronomer royal to the Cape of Good Hope, and discussing as series of observations made there with a large "mural circle," of the bright star, α Centauri, was enabled to announce as a positive fact the existence of a measurable parallax for that star, a result since fully confirmed with a very trifling correction by the observations of his successor, Sir T. Maclear. The parallax thus assigned α Centauri, is so very nearly a whole second in amount (0″.98), that we may speak of it as such. It corresponds to a distance from the sun of 18,918,000,000,000 British statute miles.

"Professor Bessel made the parallax of a star in the constellation Cygnus to be 0″.35. Later astronomers, going over the same ground, with more perfect instruments, and improved practice in this very delicate process 'of observation, have found a somewhat larger result, stated by one at 0″.57, and by another at 0″.51, so that we may take it at 0″.54, corresponding to somewhat less than twice the distance of a Centauri" 1 or to nearly 38 billions of miles.

It might seem to a non-scientific mind that the differences

above referred to of only a few fractions of a second in the parallax of a star, constitute a very slight amount but in reality such differences involve differences in the distance of such stars of millions of miles, as will be seen by the following quotation from the Edinburgh Review for June, 1850:--

"The rod used in measuring a base line is commonly ten feet long and the astronomer may be said only to apply this very rod to measure the distance of the fixed stars! An error in, placing a fine dot, which fixes the length of the rod, amounting to one five-thousandth part of an inch, will amount to an excess, of 70 feet in the earth's diameter of 316 miles in the sun's distance, and to 65,200,000 miles in that of the nearest fixed star!

"The second point to which we would advert is, that as the astronomer in his observatory has nothing to do with ascertaining length as distances, except by calculation, his whole skill and artifice are exhausted in the measurement of angles. For it is by these alone that spaces inaccessible can be compared. Happily a ray of light is straight. Were it not so (in celestial spaces at least) there were an end of our astronomy. It is as inflexible as adamant, which our instruments unfortunately are not. Now an angle of a second (3600 to a degree), is a subtle thing, it is an apparent breadth, utterly invisible to the unassisted eye, unless accompanied by so intense a splendour (as in the case of the fixed stars) as actually to raise by its effect on the nerve of sight a spurious image, having a sensible breadth. A silkworm's fibre subtends an angle of one second at 3½ feet distance. A ball 2½ inches in diameter must be removed in order to subtend an angle of one second, to 43,000 feet, or about 8 miles while it would be utterly invisible to the sharpest sight aided even by a telescope of some power. Yet it is on the

measurement of one single second that the ascertainment of a sensible parallax in any fixed star depends and an error of one-thousandth of that amount (a quantity still immeasurable by the most perfect of our instruments) would place a fixed star too far or too near by 200,000,000,000 of miles."

"The observations require to be made with the very best instruments, with the minutest attention to everything which can affect their precision, and with the most rigorous application of an innumerable host of 'corrections,' some large, some small, but of which the smallest, neglected or erroneously applied, would be quite sufficient to overlay and conceal from view the minute quantity we are in search of. To give some idea of the delicacies which have to be attended to in this inquiry, it will suffice to mention that the stability not only of the instruments used and the masonry which supports them, but of the very rock itself on which it is founded, is found to be subject to annual fluctuations capable of seriously affecting the result."

Dr. Lardner, in his "Museum of Science," page 179, makes use of the following words

"Nothing in the whole range of astronomical research has more baffled the efforts of observers than this question of the parallax. * * * Now, since, in the determination of the exact uranographical position of a star, there are a multitude of disturbing effects to be taken into account and eliminated, such as precession, nutation, aberration, refraction, and others, besides the proper motion of the star and since, besides the errors of observation, the quantities of these are subject to more or less uncertainty, it will astonish no one to be told that they may en-tail upon the final result of the calculation, an error of 1″ and

if they do, it is vain to expect to discover such a residual phenomenon as parallax, the entire amount of which is less than one second."

The complication, uncertainty, and unsatisfactory state of the question of annual parallax, and therefore of the earth's motion in an orbit round the sun, as indicated by the several paragraphs above quoted, are at once and for ever annihilated by the simple fact, experimentally demonstrable, that upon a base line of only a single yard, there may be found a parallax, as certain and as great, if not greater, than that which astronomers pretend to find with the diameter of the earth's supposed orbit of many millions of miles as a base line. To place the whole matter, complicated, uncertain, and unsatisfactory as it is, in a concentrated form, it is only necessary to state as an absolute truth the result of actual experiment, that, a given fixed star will, when observed from the two ends of a base line of not more than three feet, give a parallax equal to that which it is said is observed only from the two extremities of the earth's orbit, a distance or base line, of one hundred and eighty millions of miles! So far, then, from the earth having passed in six months over the vast space of nearly two hundred millions of miles, the combined observations of all the astronomers of the whole civilized world have only resulted in the discovery of such elements, or such an amount of annual parallax, or sidereal displacement, as an actual change of position of a few feet will produce. It is useless to say, in explanation, that this very minute displacement, is owing to the almost infinite distance of

the fixed stars because the very same stars show an equal degree of parallax from a very minute base line and, secondly, it will be proved from practical data, in a subsequent chapter, that all the luminaries in the firmament are only a few thousand miles from the surface of the earth.

เชิงอรรถ

69:1 The barrel containing a spiral spring, so that the projecting force will always be the same, which might not be so with gunpowder.


Astrology vs Astronomy

Astrology continued to be part of mainstream science until the late 1600s, when Isaac Newton demonstrated some of the physical processes by which celestial bodies affect each other. In doing so, he showed that the same laws that make, say, an apple fall from a tree, also apply to the motions of the celestial sphere. Since then, astronomy has evolved into a completely separate field, where predictions about celestial phenomena are made and tested using the scientific method.

In contrast, astrology is now regarded as a pastime and a pseudoscience — though thousands of people around the world still invoke advice from astrologers and astrology publications in making important professional, medical, and personal experiences. (This, despite the fact that current horoscopes rely on outdated information!)

Why Astrology "Works"

Yet there's a reason people continue to rely on horoscopes, and Senior Editor Alan MacRobert explains in Sky & Telescope's Focal Point column just why astrology is still so popular.

Planets have nothing to do with it. But that's not the point. If you want to get through to your believing sister-in-law or your uncle in Cincinatti, the way to do it is not to argue physics or astronomy, but to explain why astrology works.

I tell this with my own story. When I was in elementary school, I practiced a form of divination that you could call bazookamancy. Back then, Bazooka Joe bubble gum was popular. It came wrapped in a little comic strip about Bazooka Joe and his gang. The wrappers were on the ground wherever kids littered. As everyone knew, when you saw one, you stopped and asked it a question. Then you picked it up and read it. The comic was a parable that answered your question. Often you had to look mighty hard to find your answer. But if you looked hard enough, it was always there.

. . . I've described my practice of bazookamancy to two of my astrologer friends. Each of them lit up and say, "You've got it!" So at some level, they know it isn't about the planets, not if one form of divination is as good as another. Any reading or fluke or chance — any metaphor looking for its referent — will serve your uncle in Cincinnati just as well.